ASN.1 Encoding Schemes Done Right Using CMPCT

Mark Tullsen

Galois, Inc.

Bx 2019
Outline

1. Background
2. The Big Idea: Generalizing Encoders and Decoders
3. The CMPCT DSL (Bijections All The Way Down)
4. Structuring 'Bad': the "Extend with Errors" type
5. Expressiveness & Use Cases
6. Conclusion
1 Background

2 The Big Idea: Generalizing Encoders and Decoders

3 The CMPCT DSL (Bijections All The Way Down)

4 Structuring 'Bad': the "Extend with Errors" type

5 Expressiveness & Use Cases

6 Conclusion
J2735 Standard specifies the "Basic Safety Message" used in Vehicle to Vehicle (V2V) communications.

- Specified using ASN.1
- Uses the UPER encoding rule set

Creating, proving-correct, testing inter-operatibility of J2735 encoder/decoder implementations
The Immediate Need

- We want to generate *invalid* bit-streams for J2735
 - want "good" (?!?) coverage
 - know we’ve covered every class of error?
- Nice to have a solution that works
 - for any ASN.1 type (not ad hoc for J2735)
 - for other "encoding rule" schemes besides UPER
The Original Approach

\[
\text{invalid } bs = \text{decode}(bs) == \text{NoDecodeValue}
\]

\[
\text{testVectors} = \text{filter} \quad \text{invalid} \\
\quad \quad \text{(generateBitStreamsUpToLen 600)}
\]

... is not ideal:

- wrong if decode implementation is wrong!
- cannot distinguish the kind or severity of errors
- inefficient!
- will be primarily "extraneous bits at end" errors
 - error at 10th bit in the bit-stream of 600 bits!
Possibilities?

- Remove dependence on decode implementation
- Filter out "similar" bitstreams
 - we decode in byte order, 2nd errors are rarely important.
 - if equivalent up to the first error, different suffixes don’t matter!
- For each "logical error"
 - generate no more than n invalid vectors
 - generate at least n invalid vectors
ASN.1 (Abstract Syntax Notation One)

- A data description language
 - used to define hundreds of protocols and data-formats
- Expressive: a powerful set of types and constraints for describing data.
- Abstract: not tied to a single language or concrete representation
- Versatile: a variety (!) of encoding methods, specified separately from the definition of data types: (BER, DER, XER, PER, UPER, OER, ...)
- Overly complicated
 - Has been evolving for decades!
 - Two compilers, at most, support the full ASN.1 language
1 Background

2 The Big Idea: Generalizing Encoders and Decoders

3 The CMPCT DSL (Bijections All The Way Down)

4 Structuring 'Bad': the "Extend with Errors" type

5 Expressiveness & Use Cases

6 Conclusion
Current Approach

Values

Good:

{Bad}

Bitstreams

enc

dec
Make \(\text{dec} \) injective.
Generalizing Encode

Values

Good:

Bitstreams

valid

Bad:

encG

dec

encB

This Talk in a Nutshell

\[
\begin{align*}
\text{Values} & \quad \text{Bitstreams} \\
\text{Good:} & \quad \text{Valid} \\
\text{Bad:} & \quad \text{Invalid}
\end{align*}
\]
if we

- add structure to Bad (i.e., static types)
- can define encG, encB, dec
 - simultaneously (ensuring consistency of enc and dec)
 - compositionally (i.e., build larger enc/dec pairs from smaller)
then we

- can generate exactly what we want in Bad using Quickcheck.
- use encB to generate our invalid test vectors
- are not dependent upon an implementation of dec
- can extract the original enc/dec routines from the generalized ones
Background

The Big Idea: Generalizing Encoders and Decoders

The CMPCT DSL (Bijections All The Way Down)

Structuring 'Bad': the "Extend with Errors" type

Expressiveness & Use Cases

Conclusion
CMPCT: a domain specific language (DSL) for defining "compact" representations of abstract values.

- Defines correct, safe encoding/decoding pairs by design.
- It has morphed into a language of bijections.

"CMPCT" = compact("compact") -- not an acronym
CMPCT Types [simplified ASN.1 types]

\[
T := \text{Int } I \quad \text{-- integer type}
\]

\[
| +[T,T,...] \quad \text{-- sum of } T \text{'s}
\]

\[
| \times[T,T,...] \quad \text{-- product (tuple) of } T \text{'s}
\]

\[
| \text{List } I T \quad \text{-- [homogeneous] list of } T
\]

\[
| \text{Bits} \quad \text{-- raw bitstream}
\]

\[
I := \text{Width } n \quad \text{-- } n \text{ bit natural } (0..2^n-1)
\]

\[
| \text{Offset } m I \quad \text{-- integer set offset by } m
\]

\[
| \text{Constrnt } C I \quad \text{-- constrained integers}
\]

\[
C := \text{GTE } m
\]

\[
| \text{EQ } m
\]

\[
| \text{Not } C
\]

\[
| \text{And } C C
\]

\[
m := <\text{signed integer literals}>
\]

\[
n := <\text{natural number literals}>
\]
CMPCT Values

\[v := m \quad \text{-- integer} \]
\[\text{Inject}_n v \quad \text{-- sum element} \]
\[(v, v, \ldots) \quad \text{-- tuple} \]
\[[v, v, \ldots] \quad \text{-- list} \]
\[\text{bits} \quad \text{-- raw bitstream value} \]

\[
\text{bits} := (0 \mid 1) \text{bits} \\
\mid <>
\]
Type Level:

\[
\text{Bool} = \text{Int}(\text{Width} \ 1)
\]

A tuple value:

\[
p1 = (100, 1) :: \times[\text{Int}(\text{Width} \ 8), \text{Bool}]
\]

Sums:

-- the constructors for \([A,B]::\):

\[
\text{Inject}_0 :: A -> [A,B] \\
\text{Inject}_1 :: B -> [A,B]
\]

-- values:

\[
a = \ldots :: A \\
b = \ldots :: B \\
\text{sumA} = \text{Inject}_0 a :: [A,B] \\
\text{sumB} = \text{Inject}_1 b :: [A,B]
\]
\begin{verbatim}
b :=
 -- canonical encoder/decoders --
 Int I
 | SumN \([b, b, \ldots]\) -- 2^n elements
 | Seq \([b, b, \ldots]\)
 | ListE \(b \ b\)
 -- bijective operators --
 | inverse \(b\)
 | \(b \cdot b\) -- composition
 | Id \(T\) -- identity bijection
 | prim \(p\)
 -- functors --
 | +(b,b,...)
 | \(\times(b,b,...)\)
 | ListF \(b\)
\end{verbatim}
The type for bijections:

\[T \leftrightarrow T \]
The type for bijections:

\[T \iff T \]

An encoder for type \(t \) would have this type:

\[EE(t) \iff \text{Bits} \]

\(EE(t) \) (Extend with Errors) is the type \(t \) extended with the possible errors that decoding might introduce (including also extraneous bits).

- defined such that encoder/decoders are always bijections.
- details later
CMPCT Bijectons: Examples

Type level:

\[\text{Bool} = \text{Int}(\text{Width 1}) \]

Bijectons:

\[\text{w3} = \text{Int}(\text{Width 3}) :: \text{EE}(\text{Int}(\text{Width 3})) \iff \text{Bits} \]
\[\text{bool} = \text{Int}(\text{Width 1}) :: \text{EE}(\text{Bool}) \iff \text{Bits} \]

\[\text{ende_Sum} = \text{SumN}\ [\ w3, \ \text{bool}\] \]
\[:: \text{EE}(+[\text{Int}(\text{Width 3}),\text{Bool}]) \iff \text{Bits} \]

\[\text{ende_Pair} = \text{Seq}\ [\ w3, \ \text{bool}\] \]
\[:: \text{EE}(\times[\text{Int}(\text{Width 3}),\text{Bool}]) \iff \text{Bits} \]

(warning: overloading!)
1. Background

2. The Big Idea: Generalizing Encoders and Decoders

3. The CMPCT DSL (Bijections All The Way Down)

4. Structuring 'Bad': the "Extend with Errors" type

5. Expressiveness & Use Cases

6. Conclusion
Defining "Extend with Errors" (EE)

\[EE(t) = \times \left[+ \left[t \quad -- \text{successful decode of type } t \\
, \text{ERRORSOF}(t) \quad -- \text{all decoding errors for } t \right] \\
, \text{Bits} \quad -- \text{undecoded bits} \right] \]

EE(t) uniquely identifies the error as well as everything known at the time of error-detection.

- thus we can encode the whole invalid bit stream from EE(t).

ERRORSOF(t) is defined inductively over the type t.
Examples of ERRORSOF

\[
\text{ERRORSOF}(\times[A,B,C]) = \\
\times[\times[\times[A,B,C]]\times\text{ERRORSOF}(A)\times\text{ERRORSOF}(B)\times\text{ERRORSOF}(C)\times\text{ERRORSOF}(D)\times\text{ERRORSOF}(E)]
\]

\[
\text{ERRORSOF}([A,B,C,D]) = \\
\times[A,B,C,D]\times\text{ERRORSOF}(A)\times\text{ERRORSOF}(B)\times\text{ERRORSOF}(C)\times\text{ERRORSOF}(D)
\]

\[
\text{ERRORSOF}(\text{Int}(\text{Width } w)) = \text{Bits} \\
\text{-- incomplete, } \leq w \text{ bits in stream}
\]
Observations re ERRORSOF

- Breaks down into the basic Sum, Prod, Int, Bits types.
- Each of which has a canonical encoding
- Thus $\text{ERRORSOF}(x)$ has a canonical encoding.
 - which conveniently are the bits that elicited the error!
Defining ERRORSOF

Warning: detailed code ahead . . .
Defining \textsc{ERRORSOF}

\begin{verbatim}
ERRORSOF(×ts) = +[×[×(take i ts) -- the partial product , ERRORSOF(ts!!i) -- but always ends with last error]
 | i <- [0..(length ts -1)]]
ERRORSOF(+ts) = INCOMPLETE len -- not enough bits for tag + +[ERRORSOF(t) | t <- ts] -- error in the sum element
ERRORSOF(Int i) = INT_ERRORS(i)

INT_ERRORS (Width w) = INCOMPLETE w
INT_ERRORS (Offset o i) = INT_ERRORS i
INT_ERRORS (Cnstrnt c i) = +[Int(Cnstrnt (Not c) i) -- constraint failed, return int , INT_ERRORS(i) -- error in the underlying type]
INCOMPLETE w = Bits -- when the remaining bits in bitstream are fewer than the -- required 'w' bits, holds the "incomplete" bitstream.
\end{verbatim}
1 Background

2 The Big Idea: Generalizing Encoders and Decoders

3 The CMPCT DSL (Bijections All The Way Down)

4 Structuring 'Bad': the "Extend with Errors" type

5 Expressiveness & Use Cases

6 Conclusion
A Question of Expressiveness

We have

- only bijections (not functions, lenses, etc.)
 - small set of primitive bijections
- only one canonical enc/dec for each of Int, Product, Sum, List
 - sums only with 2^n elements
A Question of Expressiveness

- We have
 - only bijections (not functions, lenses, etc.)
 - small set of primitive bijections
 - only one canonical enc/dec for each of Int, Product, Sum, List
 - sums only with 2^n elements

- Can we really . . .
 - Encode all ASN.1 type constructs into UPER?
 - Encode some of the complicated integer and length encodings?
 - Encode other bit-oriented encoding rules (PER variants . . .)
 - Encode similar byte-oriented encoding rules (OER)?
A Question of Expressiveness

- We have
 - only bijections (not functions, lenses, etc.)
 - small set of primitive bijections
 - only one canonical enc/dec for each of Int, Product, Sum, List
 - sums only with 2^n elements

- Can we really . . .
 - Encode all ASN.1 type constructs into UPER?
 - Encode some of the complicated integer and length encodings?
 - Encode other bit-oriented encoding rules (PER variants . . .)
 - Encode similar byte-oriented encoding rules (OER)?

In short, pretty-much (;-)}
Use Cases

(To provide intuition for the expressiveness of CMPCT.)
Use Case 1: Optional in SEQUENCE

This ASN.1:

\[
T3 ::= \text{SEQUENCE} \{ a \ A \ \text{OPTIONAL}, \\
 b \ B \ \text{OPTIONAL}\}
\]

Maps naturally to this CMPCT:

\[
\text{Unit} = () \quad -- \text{name the 0-tuple} \\
\text{Optional}(t) = +[t, \text{Unit}] \quad -- \text{like Maybe in Haskell}
\]

\[
T3 = \times[\text{Optional}(A), \text{Optional}(B)] \\
t3 = \text{Seq} \left[\text{optional}(a) \\
 , \text{optional}(b) \\
\right] \\
:: \text{EE}(T3) \iff \text{Bits}
\]

- \(t3 \) doesn’t match ASN.1 UPER encoding.
Use Case 1: Optional in SEQUENCE (2)

The canonical encoding of $T3'$ is what matches the ASN.1 encoding

$$T3' = +[\text{Unit, B, A, A} \times \text{B}] \quad \text{-- 4 sum, 2-bit "tag"}$$

We can write this

$$\text{glue} :: \times[\text{Optional}(A), \text{Optional}(B)] \iff +[\text{Unit, B, A, A} \times \text{B}]$$

$$\text{onResult (b :: T1 \iff T2)} :: \text{EE}(T1) \iff \text{EE}(T2)$$

$$t3 = \text{onResult glue . t3'} :: \text{EE}(\times[\text{Optional}(a), \text{Optional}(b)]) \iff \text{Bits}$$
Use Case 1: Optional in SEQUENCE (3)

Optional(A) × Optional(B)
\[\iff\] \{definition of Optional\}
(Unit+A) × (Unit+B)
\[\iff\] \{distl\}
Unit×(Unit+B) + A×(Unit+B)
\[\iff\] \{+[distr, distr]\}
(Unit×Unit + Unit×B) + (A×Unit + A×B)
\[\iff\] \{sum-flatten -\}
+[Unit×Unit, Unit×B, A×Unit, A×B]
\[\iff\] \{+[unitL, unitL, unitR, Id]\}
+[Unit, B, A, A×B]
Use Case 2: rejectRight and Sums

We sometimes want to look under the hood of $\text{ERRORSOF}(t)$: this is "advanced" usage, but it allows us to turn a valid, decoded value into an error (or the reverse):

\[
\text{rejectRight} :: \times [+[a+b, e], \text{Bits}] \quad \leftrightarrow \quad 'b' \quad \text{a good case}
\]
\[
\times [+[a, b+e], \text{Bits}] \quad \leftrightarrow \quad 'b' \quad \text{an error case}
\]

\text{rejectRight} allows us to encode/decode sums that aren’t of length 2^n.
Use Case 3: Numeric Representations

This isomorphism allows us to represent 0 with one bit in an integer type:

\[\text{Int}(\mathbb{Z} \ n) \iff \text{Int}(\mathbb{Z} \ 1) + \text{Int}(\mathbb{Z} \ (n-1)) \]
The Question of Expressiveness (2)

- Can we really ...
 - Encode all ASN.1 type constructs into UPER?
 - Encode some of the complicated integer and length encodings?
 - Encode other bit-oriented encoding rules (PER variants ...)
 - Encode similar byte-oriented encoding rules (OER)?
The Question of Expressiveness (3)

- Assuming,
 - Ignore recursive types (rare in ASN.1 specs)
 - Add new primitive encoder/decoder for byte-aligned products (needed for OER and PER [the aligned version of UPER])

- Conjecture: CMPCT can express the encoder/decoders needed for
 - all ASN.1 types
 - the bit and octet based encoding rule sets (PER..., OER...)
Elaborating this Conjecture . . .

- CMPCT types are sufficient to capture non-recursive ASN.1 types
 - The simplicity is surprising due to the extreme complexity of ASN.1.

- CMPCT can capture the encoding schemes of interest
 - We appear to have sufficient primitives for low level decoding
 - We can use powerful bijections to "massage" low level things into desired types.
 - N.B., we’ve got a number of useful numeric bijections [paper!]
A Price to Pay?

- non-canonical encodings (non-injective decoders) are handled awkwardly, (the same issue with "don’t cares" in the bit-stream).
- numerous arithmetic bijections under the hood: require some fancy datatypes
- no type inference
Background

The Big Idea: Generalizing Encoders and Decoders

The CMPCT DSL (Bijections All The Way Down)

Structuring 'Bad': the "Extend with Errors" type

Expressiveness & Use Cases

Conclusion
I.e.,

- Generate invalid bit-streams for J2735 that give "good" coverage.
- Can we know we’ve covered every class of error?
Solving The Immediate Need

- I.e.,
 - Generate invalid bit-streams for J2735 that give "good" coverage.
 - Can we know we’ve covered every class of error?

- Yes,
 - a nice definition of "class of error":
 - each sum alternative in $\text{ERRORSOF}(t)$ is a class of error.
 - we’d expect this to correspond to control-flow branches in an implementation.
 - a way to measure "coverage":
 - the number of tests generated for each "class of error"
I.e.,

- A solution that works?
 - for any ASN.1 type (not ad hoc for J2735)
 - for other "encoding rule" schemes besides UPER
Solving The Immediate Need (2)

- I.e.,
 - A solution that works?
 - for any ASN.1 type (not ad hoc for J2735)
 - for other "encoding rule" schemes besides UPER

- Yes,
 - in theory, should work for nearly all ASN.1 types and encoding rules
 - If we change encodings (e.g., switch to OER), an updated generate invalid vectors would come for free.
Contributions

- We’ve captured the Essence of ASN.1 with CMPCT.
 - We can capture ASN.1 types and constraints
 - We can capture multiple *encoding rule sets*
- Shown how (surprisingly) expressive one can get even
 - with limited "dependent types"
 - restricting ourselves to pure bijections
- A principled way to lift encoder/decoder pairs into bijections
 - the EE method for capturing errors.
Questions?